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SYMBOLS AND ABBREVIAT!ONS

Impedance matrix

Radius of a sphere, cylinder, disk, etc.

Banded matrix composed of the principal diagonal of A, M
adjacent upper minor diagonals, and M adjacent lower minor
diagonals

Excitation column vector

The inverse of the matrix B

Banded matrix iteration

The lower triangular banded matrix obtained by decomposing B
The upper triangular banded matrix obtained by decomposing B
The boundary condition relative error at the j-th iteration
Convergence criterion (a number)

Control Data Corporation

Convergence measure

Central processor

Diameter

A vector defining the orientation of strips used in segment
numbering

Electric field

Efficiency

The ratio of M to N

The efficiency of the BMI process relative to full matrix
decomposition, based on the approximate number of mo's

The upper limit of the efficiency for a given bandwidth
General Electromagnetic Model for the Analysis of Complex Systems
Magnetic field

Wire current

An integer

The iterative relative error at the j-th iteration

vii
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An integer or V-1

The number of iterations required to satisfy the convergence
criterion

2n/A

Object circumference in wavelengths

Triangular matrix below B in A, also object length

Upper or lower bandwidth of B

Milliamps

Multiplicative operations

Number of wire segments; also the number of unknowns in the
equations

Peripheral processor

The predicted relative error at the j-th iteration

The distance within which all segment interactions are to be
kept in B

Wire radius

The relative error of X

Surface Area of Integration

Seconds

Triangular matrix above B in A

Right-hand side of matrix equation, representing input voltage
Numerical value of the convergence measure at a given iteration
Object width

Column vector of current coefficients, also a cartesian
coordinate

The exact solution of AX = b

The approximate solution column vector at the j-th iteration
The column vector used to start the’ BMI solution process

A cartesian coordinate or input admittance

A cartesian coordinate or input impedance

A column vector intermediate to the solution process of forward
elimination and back substitution

Wavelength

Spherical coordinate (azimuth)

viii
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GEMACS ENGINEERING MANUAL

A. INTRODUCT | ON

The function of this manual is to discu§s the physical and mathema-
tical methods used in the GEMACS (General Eléctromagnetic Model for the
Analysis of Complex Systems) code to obtain the results desired. There
are five basic steps involved in obtaining the observables used to evalu-

ate a particular configuration. These are:

(1) Geometric Modeling

(2) Structure Excitation

(3) Interaction Computation

(4) Numerical Solution

(5) Observable Computation
Section B discusses each of these areas as they pertain to the GEMACS code.
Section C is a discussion of the BMI (Banded Matrix lteration) solution
technique developed as a result of this project. Section D is a summary
of results obtained with BMI for various geometries.

Much of the information in section B is presented in the AMP
manuals. Much of the AMP discussion is directly applicable since the
basis formalism and some of the code itself is identical to the AMP
code. The primary differences are in the geometry and excitation

processes and in the use of the BM| technique to obtain a solution.

B. GEMACS FUNCTIONS

When the GEMACS program was first structured, very little was known of
the solution techniques to be implemented. Therefore, the basic functions
needed to perform a generic electromagnetic analysis were identified.

The input requirements for each function were identified and this specified

the output requirements of the logically preceding function. In order




-

e —

to assure flexibility and modularity, the outputs of each function are
symbolically identified data sets. These data sets, along with other
parameters are used as inputs to subsequent functions.

Thus, each function will operate on previously defined data or user
supplied inputs to generate another data set for subsequent use.

1 Geometric Modeling

Geometric modeling is used to convey structure geometry to the
GEMACS code. Since GEMACS uses the EFIE (Electric Field Integral Equation),
the actual structure is represented by a series of wire segments connected
in a way that approximates the actual surface. In the usual solution
technique, the segments are given a number and the number assigned to
one segment is totally independent of other segment numbers. This is
also true in GEMACS when using the full interaction matrix in the solution;
however, when using the BMlI technique, it becomes important to number
the segments in such a way that segments which are electrically close
have numbers which are also close. This is because, for any given row
or column of the interaction matrix, a segment's position is determined
by its number. Thus,all interactions with segment 1 will be in row 1
and column 1. Much study on numbering has been completed and is summa-
rized in section C. |In order to accommodate the need for specific numbering
sequence, the RN (Renumber) command has been included in the geometry
processor. With this command, the user may enter the model in the most
convenient manner and then specify the desired numbering sequence. When
reducing the EFIE to a set of simultaneous linear equations, two assump-
tions are made:

(1) The wire segments are of sufficiently small radii that circum-
ferential currents may be ignored.
(2) The current on any segment may be approximated by some function

called the basis or expansion function.
These two assumptions have several implications depending on the structure
being modeled and the expansion function used. Assumption (1) restricts

the wire radius, R, to something less than a wavelength (A\). Typically,

ol




R < A/10 is quoted as acceptable. |If the expansion function is to
represent the actual curren over the segment, then the segment length,
L, must, in general, also be less than.A. The basis function used in
GEMACS is the sine + cosine + pulse expansion with collocation and it
has been observed that L = A/4 is sufficient where the current does not
vary rapidly and L ~ A/10 is adequate where rapid variations occur. A
general rule of thumb for modeling structures is that the total area of
the wire segments should approximate the surface area of the structure.
In addition, for the expansion function used, a ratio L/R= 5 has been
found to give consistent agreement with currents obtained from analytic
solutions. Using these rules, the number of segments (N) for a given

frequency may be approximately determined from:
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where A is the surface area to be modeled. With N = 800, an area of
approximately 10 AZ can be represented quite accurately. If less confi-
dence in the observables is acceptable, A may be much larger than
indicated. The reader is cautioned that the applicability of these
rules to codes employing other methods is largely unknown at this time.
A consistent method of modeling has not been established except for the
present code.

Oﬁce the structure has been defined to the GEMACS code, several
operations take place before the next command is executed. The geometry
data are scanned to find all segments connected to each other. During
this operation, segments which have identical end points are found
and all but one of these segments are given a segment and tag number of
zero. In this way, segments in planes of symmetry and on axes of rota-
tion are allowed. The criterion for segments being connected is that the
end point separation is less than the roundoff error of the host com-
puter. This number is internally computed based on the number of bits
used for the mantissa of a floating point number. During this time, any
segment which terminates on the XY plane is identified as being connected
to a ground plane if one is subsequently specified. |f no connections
are found, this is also noted for user convenience. Once all of
the junctions are found, a list is constructed which identifies the next
segment connected to either end of each segment. For example, if end 1
of segments 1, 3, 5, 20, and 75 are connected, then data identifying the
next segments would be 3, 5, 20, 75, and 1. This forms a circular
linked list identifying all segments connected to either end of a given
segment. This information is listed in the geometry output for both end
1 and end 2 of each segment. A negative number implies end | of the
identified segment while a positive number identifies end 2. Once all

junctions are identified and the junction linked list constructed, the

geometry data internal format is changed from end point data to centerpoint

coordinates, segment length, and direction cosine format. When used,
dimensioned geometry data are scaled to wavelength for computational

ease.




2. Structure Excitation

There are two methods of structure excitation available in the
GEMACS code. These are voltage excitation for antennas and a wave excita-
tion for scatterers. These types may be superimposed for composite excita-
tions.

a. Antenna Source Model

The normal derivation of the currents on a body involves

writing the electric field as
E(X) = E'" (x) + E(X) (Eq. 2)

where E(X) is the total electric field at X, ginc (X) is the incident
electric field, and'ES(X) is the electric field due to some volume
distribution of currents. By imposing the boundary condition at a
finite number of points on the surface of a perfect conductor and speci-

fying the incident field, we solve for the currents induced on the body.

>

3

xE=t1x(Emc+Es)=0 (Eq. 3)
therefore,

axET acyxE (Eq. 4)

In the thin-wire approximation, this condition is enforced
on the component of the field in the direction of the wire since the
assumption that azimuthal currents are negligible forces the 6 components

to zero, i.e.,

R L (Eq. 5)
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where E is a unit vector in the direction of the wire. This condition
is enforced at the centerpoint of each segment and no information about
E is known between these points. This is equivalent to throwing all of
the wires away since wire parameters have no effect on the boundary
conditions, but only on the current distribution used to satisfy the
boundary condition.

Now, the only way to specify a boundary point to the code
is via a wire segment and thus an antenna source must be specified as a
wire segment. However, this segment is totally artificial in that ﬁxE
along this segment is not zero since V=.[.E- de is the voltage driving
the antenna. Since the boundary condition is only satisfied at the
midpoint and the structure of the excitation field is of second order, a
uniform excitation gives reasonably good results as long as the excited
segment length is much less than . Since the total field at the midpoint
has been specified, equation 2 can be used by again invoking the thin-

wire approximation and taking only the tangential field.
il s = o h=inc =S
s ?ant = 2,-(E + E )
R it 0 TS o (Eq. 6)
ant 9

with Eant = 0 at those points not driven as antenna sources.
The solution of equation 6 is a set of currents at the
midpoints of each segment and the antenna input admittance can be approxi-

mated by:
Nl
YR 5 (Eq. 7)

The shortcomings of this type of model are presented in

the AMP Engineering Manual and its references (reference 16).

A
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b. Field Excitation
The incident electric field (E) on a structure may be

either a polarized or nonpolarized field from a plane or spherical wave.
Multiple wave excitations may be combined in any order desired.
In general, the field at the observation point r is given

by

e_j'ki L% i

E(r) = 'E'l "

AL (Eq. 8)

where‘f| is the source or direct illumination field andfR is the reflec-
ted field. |If there is no ground plane, ER = 0. There are two differ-
ences between a spherical and plane wave. The spherical wave has a 1/R
amplitude dependence and the wave vector ﬁ is always oriented in the
direction of the field point from the source point. For a plane wave,
the amplitude and ﬂ are constant.

In general, the incident or source field is:

—E-I =E + JEP (Eq. 9)

where EP is the pciz-iatior component if present. EP is determined

N EP |
from the vector revationship E x EP = k and ECC = +5-- where ECC Is the
user supplied eccentricity. lET
The reflected field is given by
E =R, E. ¢ Ry, B0, = R, E, (Eq. 10)

R is the in-plane reflection coefficient

R, is the out-of-plane reflection coefficient
is the in-plane tangential component
is the in-plane normal component

E, is the out-of-plane component




Let p be a unit vector normal to the plane of incidence. Then, with ﬁ.
b i

from source to specular point and kr from specular point to the field
point, we have

© >
]

ki x kr (unit vector | to plane of incidence)

mi

1l
m|
+
s

(Eq. 11)

,=(E<p)op

-kE+'EP)+kE+'EP] - i
-k, (E, + JEP, o (E, * JEP) [_ki+kj
y X

m|
[

2 2
k
(kx L Y )
(Eq. 12)

E” =E-E, (Eq. 13)
e e .
By = (E” e 27) 2 (Eq. 14)
-P = - n
o e (Eq. 15)

The reflection coefficients R]‘ and R, are the modified
Fresnel coefficients. This method is discussed at some length in the
AMP Engineering Manual (reference 16). Portions of the manual are repro-

duced as appendix A. The reflection coefficients are:

> -sin2 )
EE cos 8§ = = (Eq. 16)

S
2: e S
CE cos 6 LE sin




cos 6 - € -sin2 0
Rl = (Eq. 17)
cos @ + € -sin2 0
E 4
El _jcl ( s
EE - E_- | F s Eq. )

0 1

where 6 is the angle of incidence measured from z and € and o, are the
dielectric constant and conductivity of the ground plane. The free space

permittivity is €

3. Interaction Computation

The interaction or structure matrix used in the GEMACS code is
formally identical to that found in the AMP code. Minor changes in the
data structure have been made; however, given identical geometries, one
obtains identical elements in the structure matrix. The derivation
involved in obtaining the elements of the structure matrix is presented
in chapter 11 of the AMP Engineering Manual portions of which are repro-
duced here with equation numbers changed to be consistent with numbering
in this manual.

a. Integral Equation Formulation

The electric field E due to a volume current distribution

J is written by means of the Green's dyadic as
E(r) = SSS juuyg I (r) e G (r, r ) dv (Eq. 19)
v

where F; and r are the observation and source points, respectively, and

the Green's dyadic is expressed in the usual notation as

€ (7)) =-(/am) T+ (1K) vvl g

where

g = exp(-jk |F - F;l) /|F - F;|




and | is the unit second-rank tensor. The suppressed time variation
is exp (jwt) with w the radian frequency. The plane wave propagation
constant is k, and is related to € and My the permittivity and per-

meability of free space, respectively, and w by

k = w,/uo €

Where the current distribution is limited to the surfaces

of a perfectly conducting body, equation 19 becomes
E(r) = _U Juugy J (r) « @ (r, r,) dA (Eq. 20)
S

with j; the surface current density. |If this surface current is induced
by an incident electric field EJ, then an integral equation for the

unknown surface current FS can be obtained from equation 20 and the
boundary condition that

& = - - - R
n(ro) X [E (ro) +E (ro)] =0 (Eq. 21)
where n (F;) is the unit normal vector at F; and Es is the scattered

field due to the secondary current distribution. Equating E'S of

equation 21 with E of equation 20 yields

N — -1 —-— . S — = o p— T —
n (ro) x E (ro) =n (ro) x ff Juug 3, (r) «G (r, ro) dA
. (Eq. 22)
For the thin-wire approximation, limiting attention to 1

circular cross-section bodies of diameters small compared with the

wavelength, the azimuthal current may be neglected, and equation 22

becomes
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S

(Eq. 23)
where s is the unit tangent vector at r pointing in the direction of the
current. A scalar integral equation for the current is obtained by

taking the dot product of equation 23 with the unit tangent vector s
at t!.e observation point F; as

“sy B (7)) = SS jou 3, (F) [Q.Qo + (509) (s ) —“(2] g(F, ¥,) dn
S
(Eq. 24)

If the assumption is now made that JS is independent of
the azimuthal variable, equation 24 can be written

k o

27
e : A A 1.8 s
gL e j‘ jawu  Jg (s) i in B e i o g(r, r_) déds
0
L

(Eq. 25)

where a is the wire radius and the s integration is over the entire
length of wire L. A final approximation is that the current may be
realistically represented as a filament of strength IS (s) = 27ma Js (s)
flowing on the wire axis while the field is evaluated on the wire

surface, allowing equation 25 to be written

~

L p ) = Cen ) S 1, (s) [s- S0 T o ]g(F, 7)) ds
o k o

(Eq. 26)
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where IF'- ?;l is now measured from the wire axis, or source point, to
the observation point on the surface, which can thus never be closer
than the wire radius a. By considering the current as a tubular sheet
centered on the wire axis while evaluating the electric field at the
wire axis, one can resolve the ambiguity in the azimuth involved. The
form of equation 26 is not changed using-this convention, but the
interpretation of the tangential field evaluation is simplified when
nonparallel, nonplanar wires are considered.

The thin-wire approximation which leads from the electric
field integral for a surface current distribution to equation 26
involves the assumption that the wire radius a << A so that: (1) azimu-
thal current flow around the wire may be neglected; (2) the longitudinal
current is independent of azimuth and may be represented as a filament
along the wire axis; and (3) that the surface integration can be replaced
by a line integration along the wire at a radial distance a, so that the
minimum source-to-observation point distance is a thus avoiding the
singularity in the kernel of the integral which would occur at r = s

This thin-wire approximation has been applied to radiation
and scattering problems with a great deal of success. Until fairly
recently, for example, linear antenna theory was almost exclusively
restricted to the thin-wire approach; the same observation applied to
scattering from finite length cylinders. At the same time, the antenna
and scattering solutions were largely confined to dipoles on the order
of a few wavelengths long. This results, for the most part, from the
approximate analytic approaches required due to the difficulty involved
in obtaining a numerical solution of the integral equation. While Wu
(1960) and Chen (1968) extended the analytic methods developed by Hallen
(1938) and King (1956) to antenna and scatterers without this length

restriction, their results are quite complicated in form and in addition

have not been subjected to extensive experimental comparison.




The reason for concentration on analytic solutions to the
integral equation, until the past few years, was the lack of sufficiently
powerful computers to provide the capability to obtain a completely
numerical solution. With the present development of both high-speed
computers and advanced methods of numerical analysis this is no longer
the case: significant progress has been made in extending accurate
numerical solutions to more complex geometries. In the following section,
the method of solution will be outlined for the electromagnetic properties
of structures to which the thin-wire integral equation is applicable.

b. Reduction to a Linear System (Collocation)

A numerical solution to an integral equation may perhaps
be best undertaken using the method of moments. This is a well-founded
mathematical technique for finding the unknown by forcing the integral
equation to be satisfied in some prescribed fashion over thé range of
the integral operator. GEMACS is based on the thin-wire electric field
integral equation.

Equation 26 may be written symbolically as:
£(f) =g (Eq. 27)

following Harrington's (1968) notation. The solution of equation 26

(or of equation 27) is obtained by the method of moments. An intuitive
approach to solving equation 27 for the unknown function f is to set f
equal to a constant fi within N subintervals of the domain of £, and to
require equation 27 to be satisfied at N points over the range of {,
obtaining N equations in the fi unknowns. This is a specialized applica-
tion of the method of moments which is more generally written as follows.

Let

Fad s %

with the basis function fn defined in the domain of £ so that equation

27 may be written

13
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a, £(f)=g (Eq. 28)

Then, with the set of weighting functions W defined in the range of

£, the inner product denoted by < > is formed as

Zan <wm. ﬁ(fn> = <wm. g> (Eq. 29)

where m = 1,2,3 ... Equation 29 can be written in matrix form as-

(6,1 [a ] = Is]

Gmn e <wm’ £ (fn)>
S = <:} . j>>
m m

and the matrix Gmn is referred to as the structure matrix. If the

where

and

inverse of Gmn exists, then the a, can be found,and thus, the function f,
which is the desired solution, for any specified source function Sm.

The proper choice of weight functions and basis functions,
as well as the subsectioning of the domain of £, is not an obvious one.
Although there is some leeway in the matter, careful consideration of
the physics of the problem and the nature of the expected solution will
show that some representations for the fn will be more efficient than
others in terms of computer time and accuracy. Constant, linear, quadra-
tic, trigonometric,and Fourier series have all been used for this role.
The weighting functions have generally been more restricted in choice

than fn' The special case L fn is referred to as Galerkin's method.




More often, the weights are §-functions, a method referred to as
collocation, so that the inner product equation 29 merely becomes
the sequence of values £ (Fn)m and g . These are, respectivel,,
the tangential electric fields due to current segment n at observa-
tion point m and the tangential incident electric field at observa-
tion point m.

c. Current Expansion

The GEMACS program employs the collocation method with

constant, sine and cosine terms for the fn segment or current function,

[e@ey
N N
I1(s) = Z Uj (s)[Aj + BJ sin k(s-sJ.) + CJ.cos k (s-sj)] =Z UJ.(s)lJ.(s)
j =1 T =1
(Eq. 31)

where Uj(s) is 1 when s is on segment j and zero otherwise. Equation

31 appears disadvantageous because three constants are required to
specify the current on each segment, so that apparently 3N linear equa-

tions need be solved; however, it is not necessary to employ the integral
equation itself to find the extra unknowns introduced by the sinusoidal
expansion. Two of the three constants for each segment may be obtained
by requiring the current in adjacent segments to satisfy some specified
mutual conditions. In the GEMACS thin-wire program, the extrapolated
current from a given segment is forced to match the center current
values in two adjacent segments to satisfy the required condition for
two-wire junctions as follows.

Let the current on segment j be expressed as

b = A, + B, sin k(s-s,) + C. 5 k& is=8.
J(s) j j sin k( sJ) j cos (s J)

(Eq. 32)




with sj the midpoint coordinate (Yeh and Mei, 1967). Also, let segment
j be connected to segments j-1 and j+1 at its minus and plus reference
ends respectively with the reference directions on all three segments

the same. Evaluation of I, at s., s. ., and s. results in
j j j=1 +1

A wC =
] J j
s e R s R T Eq.
j e = G sl jg=1 Eq. 33)

A. + B. s. s Ce e .=
j T e i Ci+1,] Ij+1

where dj is the length of the jth segment and

= [k(djtl + dj)/z]

cos
c|jxl, j

Solution for Aj’ Bj’ and Cj in terms of lj- l., and |j+l provides an

|y
equation of the form

Ij(s‘) = Xj(s')lj_] + Yj(s') |j + zj (s") |j+]
(Eq. 34)

where Xj, Yj’ Zj contain the coefficients Aj’ Bj’ Cj. The system of
equations which results from the collocation solution to the integral
equation is thus seen to involve as unknowns the N current samples at
the centers of the N segments into which the structure is divided.

»The extension of the interpolation procedure to multiple

junctions is straightforward. Consider the case where segment j is

connected to m segments numbered j + 1, ..... , J +mat its plus end and




the single segment j-1 at its minus end. Then only the equation repre-

senting equation 32 evaluated at Sj+l is modified and becomes
j+m j+m
1 1
A. + = :E: B: s, €. e, ;) =~ :
17 W B st fsgl-g 2l s
i=j+1 i=j+1

which comes from interpolating Ij to the midpoints of the m connected

wires where it is equated to the average midpoint value. A solution for

jo1% Ly
'j+m follows as before. A multiple junction at the minus end of the
segment is similarly treated.

the Aj’ Bj and Cj in terms of the midpoint currents |

The sinsusoidal current expansion appears to make the
system of equations resulting from collocation somewhat more involved.
But the required computer time is not significantly increased when
compared with the same number of current unknowns without using the
sinusoicdal expansion. Other current expansion functions-linear, quadra-
tic, Fourier series-could be used in place of the constant-sine-cosine
expression, but this particular expansion has a number of additional
advantages over the other possibilities mentioned. For instance, a
solution for the current to a specified accuracy for a half-wave dipole
scatterer and antenna requires the fewest current segments using the
sinusoidal expansion (Neutreuther, et al, 1968). This advantage would
be expected to carry over to more complex geometries. Second, the ,
solution will more accurately exhibit the required dependence on wire i
radius (Andreason, 1968) because the constant current term produces
infinite tangential electric field on the current axis, as opposed to
the sine and cosine terms which do not.

Third, the parallel and perpendicular electric field |
components (due to the sine and cosine current terms) and the tangential
field components (due to constant current terms) may be analytically

evaluated. This eliminates the necessity for extensive numerical

integration to evaluate all the elements in the coefficient matrix




Gmn' Only the perpendicular electric field excited by the constant
current terms requires numerical integration and this is handled by
applying the Romberg variable-interval width technique to the difference
integrand. This is discussed in the appendix of the AMP Engineering
Manual.

d. Calculation of the Structure Matrix

The form of the matrix elements which result from applying
the method of collocation to equation 26 is considered in the following
discussion. Each entry Gij in the structure matrix represents the
tangential electric field at observation point i on the structure produced
by unit current flowing on segment j. The boundary condition on the
tangential electric field is enforced at each observation point. The
collocation method of solving the integral equation is thus basically
one of calculating electric field components at specific points due to
the current induced on the structure.

The thin-wire approximation involves the explicit assump-
tion that the effects of azimuthal currents can be neglected in compari-
son with those of axially directed currents and that, in addition, the
cylindrical tube of axial current has no azimuthal dependence. The
former assumption allows one to consider only one current component
rather than two, while the latter provides partial justification for

reducing the surface integral to a line integral. It may be deduced

from an examination of equations 25 and 26, however, that even where
Js is independent of ¢ the kernel of the integration equation depends in
general upon both ¢ and s. However, the integrand is independent of ¢
in the special case where the observation point is located on the axis
of a linear tube of current, and the ¢ integration of equation 25 may
be replaced withoyt approximation by the factor 2.

Consequently, the observation points are located where
the tangential electric field is to be calculated, on the axis rather
than on the surface of each wire segment. The ¢ integration in equation

25 is thus exact for the self-field as well as the mutual fields for

A . A,ﬁ.h..._..,....--illliilii.il




all current segments having a commoniaxis. In addition, the possible
ambiguity involved in evaluating the incident field over a 27 variation
in ¢ on the wire surface is resolved. As a final point, the observation
point is always at least as far as the wire radius from the source
point.

When the mutual fields of nonaxially aligned current
segments are required, the ¢ integration is not so simply performed.
And, if no approximation were used, the ¢ integration would require
numerical evaluation. The most obvious approach is to consider the
tubular current source to approximate a linear filament on the wire
axis, a procedure which again replaces the ¢ integration by a 2n factor.
Unfortunately, this approximation eliminates the influence of the wire
radius from all mutual field terms on the phase change and geometrical
attenuation of the field caused by the separation of the source and
observation points.

An alternative to the above method is replacement of the
current tube by a current filament which is not located on the wire axis
but is displaced in distance from it by the wire radius. The direction
of displacement is perpendicular to the plane of the wire axis and the
line joining the observation point and wire axis midpoint (the observa-
tion point for the self term field). The geometry of this method is
shown in figure 1. The improved agreement obtained between theory and
experiment for a 16-sided regular polygon backscatter cross section
demonstrates that this approach is more realistic.

To summarize briefly, the surface integral is reduced to
a line integral by neglecting azimuthall currents and azimuthal variation
of the axial current. Self-field terms are calculated with the observa-
tion point on the axis of a cylindrical current tube, while mutual field
terms are calculated at the same observation point with the current
represented as a filament displaced from the wire axis by the wire

radius.

ITaken here to mean the direction measured along the intersection of
the current tube surface with a plane perpendicular to the axis of
the current tube.
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(b) Geometric parameters for field evaluation

Figure 1. Geometry of Current Filament
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The integral equation 26 can now be written in the
form

e k m

N
R S O LR ECE
AS

(Eq. 36)

m
nent of the incident electric field at the mth segment, and

exp [-jk \/LZ + (sm - 5)2}

m i (Eq. 37)
\/;2 + (s - s)?

It should be noted that the integration over L has been reduced to a

where ASn denotes the length of segment n, E_is the tangential compo-

summation of N separate straight-wire segment integrals. It is conve-

nient to rewrite equation 36 in terms of cylindrical coordinates

referred to the wire segment being integrated. Then one obtains

N
2
R g 2 &y )
Em B (pro/hn)lz: S G K2 oz ds g(rmn' zn)ln(zn) dzn
el e
(Eq. 33)
where
glr z ) =exp (-ikr )/r (Eq. 39)
= 2 ) 2
"on = \/(zmn v Zn) *Pun * O (Eq. 4o)
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a is the radius of wire segment n, and Pmn and z ., are the radial and %
z-coordinates of the observation point at the center of segment m referred
to the midpoint of segment n, as shown in figure 1.

e. Impedance Loading
The discussion has thus far been limited to the case of a

perfectly conducting scatterer. The approach may be generalized to
allow for loading of the structure by introducing a voltage drop term in
the integral equation. |If the impedance loading per unit length on

segment m is Zm, then equation 38 becomes

Em - ImZm = same right-hand side (Eq. 41)

e Current Sclution

Having evaluated the mutual impedance elements (the

structure matrix), equation 26 can be written in matrix notation as

N

| i
E Gij lJ.=-Ei i=1,2, ... N (Eq. 42)
j=1 {

where G is the structure matrix, Ij is the unknown current at wire
segment j, and E: is the incident tangential field at segment i.

Equation 42 is solved in the form

Bt -1 I
|J. = Zcij E, (Eq. 43)

J=t
The operation implied by this equation may be accomplished via inversion,

factorization of the G matrix, or by iteration. |In the collocation

solution of the wire-antenna problem used in the GEMACS program for arbitrary
thin-wire structures,the solution of equation 43 for the current will
represent the major portion of computer program execution time for

complex structures containing a large number of segments. It is, therefore,
of the utmost importance to have efficient solution procedures available

for this tvoe of structure.
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4, Solution Process Implementation

The basic solution process involves decomposing the structure
matrix [G] (or that portion of it extracted for a BMI solution), per-
forming forward elimination and back substitution, and performing matrix
multiplication. The performance of these functions is straightforward

! when ;11 of the data reside in core. However, GEMACS was designed to
hand!&jlarge problems and thus core resident routines are not very

; efficient. The primary function is that of decomposing a matrix into an

i upper and lower triangular matrix when none of the matrices will fit in
core storage. The algorithm employed in GEMACS is specifically tailored to
the data storage method for matrices. All matrices are stored by column,

. that is, each column requires a separate read and write. For this 1
discussion, a column will be referred to as a record. While this is
obviously not the best 1/0 scheme, it is likely to be fairly good since

| , larger problems typically require several hundred elements and each
record will contain twice that number of entries since the matrix is
complex. Therefore, the system buffer for 1/0 will be quite adequately
used with a single record. Enlarging the buffers usually increases the
core size and will not significantly reduce run time. |In addition, all

‘ 1/0 is in ANSI FORTRAN IV for compatibility with a large number of
machines.

The function of the solution processor is to find the solution

| to the set of simultaneous linear equations:
Gt = ¥ (Eq. Lk)

The method employed is known as lower/upper triangular decomposition

which is a variant of Gaussian elimination. The matrix G is decomposed

into lower (L) and upper (U) triangular matrices such that

G=LU
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then

G |
LUl
ul

(]
<<
[}
<

and

Note that the inverses of L and U are never found and the notation is
used to show the solution logic only. Also, the inverse of G is not

found unless explicitly requested.

When decomposing a matrix, one proceeds down the diagonal
modifying all elements below and to the right of the diagonal by opera-
tions performed upon elements of the diagonal row and column. Thus,
once the ith diagonal element has been used, all column elements below
and row elements to the right of the diagonal will not be referenced
again. These are the elements of the lower and upper triangular matrices
and may be written out immediately to their respective files. Likewise,
the elements of the square submatrix remaining may be written to a
peripheral file and when all of the elements have been processed, all
future elements reside in this square submatrix which is smaller by one
row and column than the source. This procedure is repeated N-1 times
where N is the dimension of the original matrix. |In this way, the point
is reached where the entire remaining submatrix will fit in core and may
be decomposed using normal codes. This procedure is illustrated in
figure 2 for the first three diagonal elements of a 10 x 10 matrix.

Note that even though the elements of the upper triangular
matrix are row elements, they will be stored as column elements. This

will be compensated for during the elimination process.

The types of decomposition encountered are referred to as row
or column decomposition depending on the sequence of operations performed.
GEMACS employs column decomposition and diagonal pivoting; that is, no row

or column interchanges take place. The lack of interchanging rows or
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Figure 2. Illustration of Matrix Reduction During Decomposition
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columns may lead to problems for ill-conditioned matrices; however, the
matrices generated by GEMACS do not display this characteristic except
possibly near high-Q resonances which are unikely on large structures.
The matrix decomposition is monitored to detect the occurrence of
instability or errors due to round-off accumulation. Such indication

did not occur during the extensive development work on the BM| scheme

for a wide variety of shapes. The incorporation of a pivoting capability
in GEMACS is possible if a need is demonstrated.

The algorithm for GEMACS decomposition at the Jth round is:

G(J,1) = G(J,1)/G(J,d) for | = J+1, N (Eq. 45)

6(J,1)*6(K,J)
G(J,J)

G(K,1) = G(K,I) - for K = J+1, N (Eq. 46)

Note that the second term in equation 46 contains the con-
stant G(J,1)/G (J,J) for | and J fixed. Then as K varies, contiguous
elements of the Ith column are modified. |In the FORTRAN code, this
permits simple subscripts to be used with incremental steps and alleviates
the need for determining the storage address of the elements for each
value of |. This results in a more efficient code which executes much
faster than codes which perform decomposition by rows. Also, this
method makes it computationally simpler to decompose real or complex,
banded or nonbanded matrices using the same subroutine.

The result of the dzcomposition is lower and upper triangular
matrices written by record to two separate peripheral files. The matrices
could have been combined, however, they are never both needed simultane-
ously. Therefore, more of each will fit into the available core using
this method. Normally one of the matrices will have ones (1) on the
diagonal while the other will have the diagonal elements as modified
by decomposition. The GEMACS code places the diagonal elements on both

matrices since, if the original matrix was transposed (as in the case
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for the GEMACS structure matrix) the role of the lower and upper matrices

is interchanged. |If L and U are the lower and upper matrices resulting

from decomposition of G, then

G = LU (Eq. 47)
6" = ()7

=uT LT
6 = LT uT (Eq. 148)

where LT and UT are the lower and upper triangular matrices obtained
from transposing U and L. Therefore, the role has reversed and the

logic has been incorporated in the GEMACS code to always assume the lower
triangular matrix has unit diagonal elements.

Using the algorithm described above, GEMACS needs room for only
three columns of the matrix in core in order to perform the decomposition
(2 columns for decompositon and 1 column to accumulate the elements of the
upper triangular matrix). The lower matrix is stored on a scratch file.

Once the matrix has been decomposed, the data to be used in
the lower matrix are recovered by columin until the available core storage

is used. Forward elimination is the process of solving the system
LY = V (Eq. 49)

where V is the original right-hand side and Y is originally the null
vector. Storage for Y is not actually required since V may be overwritten.

The elements of V are modified according to
i-1

g WY % v Eq.
v =V, Z . v, (Eq

j=1

50)
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where Qij is an element of the lower triangular matrix. It is seen that
the element v depends only on the elements Vj which precede it, thus the
name, forward elimination. Therefore, v, may be accumulated for those
rows of V for which the columns of L are in core. Note that the elements
of L were written out as a column even if G is a transposed matrix since

the rows of U become the columns of L.

Once Y is found, the system that remains is
ur =y (Eq. 51)

where U is the upper triangular matrix with 1 row per record, | is the
solution vector,and Y is L-]V or a modified right-hand side. Since U is
a lower triangular matrix, one starts at the bottom and works back up
the right hand side. The elements of | again overwrite Y or V and are

given by

vy = (vi - 2 uij Vj)/uii (Eq. 52)

j=i+l

where uij is an element of the upper triangular matrix. Since the last
elements of U are needed first, the GEMACS code will determine how many
rows will fit and fetch the data in the proper sequence. Since ANSI
FORTRAN does not support random access 1/0, this can be a time consuming
and expensive process for very large matrices. This expense, as well as
the expense of decomposition, is considerably reduced for banded matrices,
however, when using BMI, the solution process is repeated for each itera-
tion. A detailed discussion of BMI is presented in section D.

Implicit in using BMI is the matrix multiplication involved in
finding the RHS (right-hand side) at each iteration, i, prior to the

solution of equation 49.

c

RHS, = V - (GL + GU) I, _, (Eq. 5

3)




The elements of equation 53 are matrices where GL and G'' are those parts
of the structure matrix not included in the band. V is the excitation
and I._ is the last solution obtained. Remembering that we have core

1
storage for at least three columns of the structure matrix, Vi’ I r
e
and one column of G will fit in core. The elements of GL and GU remain
imbedded in G. The elements of RHS for a bandwidth of M are (where i

and j are subscripts of the matrices):

N
RHSi = V; _j E:i_m(GLij + GUij) Ii (Eq. 53(a))
j > itm

and are accumulated as the blocks G are read into core. The same tech-
nique of partial sum accumulation may be used to multiply matrices
tegether whichwill not fit into core, and it is even more efficient than
conventional methods when they do fit,since again, the innermost FORTRAN
DO loops reference continuous data,and thus,an optimizing compiler will
not generate the indexing locations code.

In discussing how to handle large matrices, the idea of very
large core machines usually comes up. While such machines exist, few
can directly access very large arrays. For instance, while the CDC 7600
may have 1 million words of LCM (Large Core Memory), only 131,000 werds
may be addressed in any single array. This is due to the size of the
address word used by the compiier in indexing computations. It is
highly unlikely that anyone is going to be willing to dedicate more
than 18 bit words to address storage,and thus, 131,000 is the limit.
Without assembly language routines, this necessitates the use of out-of-
core techniques and GEMACS has been specifically designed for this within
the constraints imposed by ANSI FORTRAN 1V. 4

5. Observables Computation

The GEMACS code will compute the near and far electric field

upon request. These quantities are computed exactly as in the AMP code.

Portions of the AMP Systems Manual describing the AMP subroutines EFLD
and FFLD are reproduced here. The GEMACS code does not include the ground

wave capability present in the AMP code.
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The far electric field due to line currents can be written

g -jkr AR o=y ST s T

E (r) = jwy, < [(k (k Se"k T dJL)) -SeJk' : T(r) dz]
e (Eq. 54)

where T is the position vector of the observation point, r' is the posi-

tion vector of the source point, k is in the direction of propagation
with a magnitude of 2n/X. Specialized to straight wire segments as used
in the GEMACS formulation

n -jkr S s AN
= - e e jke R, [ 3 =
EM =i &5 Rk (k- Q) Qi] 2
i=1
(Eq. 55) b
where N, is free space impedance,lﬁi is the position vector of the }
center of the it" segment and g
s/2 e :
6. = u, S eJZW(k' ui)t Ii(t) ;
i i -5 dt ]
-(s/2) g

~ PN

where u; = cos a; cos Bi x + cos o, sin Si y + sin a, 2 which is the

A
reference direction of the ith segment with the angles defined as shown ,g

below, tu, = FUA -E}/A, and s is the segment length in wavelengths.




With
Ii(t)/A -4+ B, sin 2mt + C; cos 2wt d
integration of Qi yields
o & sin mw, s sin m(1 + w,)s sin (1 - Wi)s
Q =u, [A, —— + j B, - :
i i i ™. i Zﬁil+wi) 2w (1 - wi) ‘
sin w(1 + wi)s sin (1 - wi)s
+C, ( T O wi) e = = wi) (Eq. 56)
where W, = - ﬁ . G_ (Eq. 57)

Note, the term & (ﬁwlai) in equation 55 is completely radial and

cancels the radial component of Qi' This term is ignored in GEMACS since
the desired transverse components will be computed by a dot product.

Thus for program use only and with the understanding that only transverse

components will be used, we write

iy N, o Jkr iR =
EM = -5 12 S E eIk Ry o, (Eq. 58)

Ground effects are included by means of an image and the
appropriate reflection coefficients. The z component of the segment:

reference direction vector u changes sign for the image as shown

Direct Ray




Using this convention, the reflected field can be written in terms

of the image field (EI) as

G

Ry (- p) b+ Ry [E'-(E . p)p]
(Eq. 59)

oty . o
=R\ E + (RJ_ Rll) (E" - p)p

~

where p is a unit vector perpendicular to the plane of incidence,

cos 6 -\/ -sun
R

o cos 9 +\/ £ -snn

e cos 6 - \/ -sin

Rll
e cos © +‘\/—_ﬁt;T;2—_

are the reflection coefficients for the image field perpendicular and

parallel, respectively, to the plane of incidence,

1o,

),

U)El

and 6 is measured from z.
For a semi-infinite ground, the electric field of the image

can be calculated from equation 55 and substituted into equation 59
to calculate the reflected field.

To compute the near field at a point in space due to the
current on a wire structure, the field is computed for three current
distributions: sine, cosine, and constant functions on all wire seg-

ments and then summed vectorially.
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The wire segment is considered to be located at the origin
of a local cylindrical coordinate system with the point at which the

field is computed being (p', ¢', z'). The geometry for a filament of

current of length A is shown below.

N

a L=
:

Segment —

For a sine or cosine current distribution,the field can be written in

1

closed form. The p and z field components for a current

X
sin kz
| are:
o cos kz

L n e Ik : cos kA /2 } o e Ik ‘cos ka /2

' iy =
Ez o'y 2") A J -sin kA /2 kr] I sin kA /2

-jkr
N . Rl , jsinkA/Z
=43 2 I?; ) (EF;;E (kz -kA/z)l cos kA /2}

lstratton, J. A., Electromagnetic Theory, McGraw Hill Book Co., New York,
1941, p.45h4.




field components for a current | are
| -jkr
: 1 e 2
E (o' 2') === (-j == (ko) | (j+
-jkr
: 1 e /<"
G+ kr )

1 (kr])z

an integral of exp(-jkr)/r which must be evaluated numerically.

»ﬁ
T.
f i + G se—12 e (kz' + kA 72) ] "sin k8 /200 (gq. 60)
: i J kr] (kr )2 cOoS kA /2
E ! |
I -jkr
' ty = O e W 3ol i e 2 cos kA /2
Fs 10ty g ) e et ks A2) kr, {-sin ka /2 }
= filkp -jkr .
- i e 1 cos kA /2 e 2 sin kA /2
(kz' + ka /2) kr] sin kA /2 i kr2 cos kA /2
-jkr
Sy o VRS NS aad sin kA /2
(kz kas2)™ (i + kr ) 2 cos kA /2
2 (kr2)
-jkr : -jkr
. 1 =sin kA /2 , - D 1 e 1
kr, { cos ki /2 } + (k2! + ka /2)" (J + =) “
(kr])
-sin kA /2
. { cos kA /2 } (Eq. 61)

The expression for the field of a constant current distribution involves

The

(Eq. 62)




A/2

I° " e-jkr
Bl 2 m o Ml S =
-8/2
-jkr -jkr
e 2 '(j‘“El_) (kz' + kas2) &1
2 I 2
(krz) (kr])

1

dz + (j + krz ) (kz' -ka/2)

{

(Eq. 63)

These expressions are separated into real and imaginary parts for

evaluation in the program.

The coordinate p' for a wire segment is taken

as the distance from the observation point to a point on the side of the

segment as shown below.

Also, the components Ep

in vector direction.

are multiplied by p/p' to account for the change

Ground image contributions are taken into account in the same

manner as for the far field computation.
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; C. BANDED MATRIX ITERATION THEORY AND DEVELOPMENT SUMMARY

1. Introduction
This section is a summary of the theory and development of the
} BMI (Banded Matrix lteration) solution technique for the linear simulta-
neous equations arising from the thin-wire method of moments formalism.
i Standard methods of computer solution are too expensive for application
to large problems. The BMI technique was developed to reduce this cost.
It was chosen from a variety of possible new alternative methods after a
review of the literature (refeorence 1). The first application was for
\ single straight wires, either antennas or scatterers, up to 10 wave-
lengths long (reference 1). Success in this application motivated a
study of multiple wire configurations and a test of application moti-
vated to wire grid problems (reference 2). Initially, studies were
restricted to problems involving 100 unknowns or less for economic reasons;
exact solutions computed by standard methods were compared to the itera-
tive solutions. The relative efficiency of the BMI technique was suffi-
ciently high to justify construction of a computer code for performing
- s the out-of~-core storage manipulations required in the solution of large
problems. During construction of this code, the numerical properties of
the technique were studied and convergence measures were investigated
(reference 3). The combination of the use of symmetries and the BMI
study, wire grid models of conducting bodies of revolution were investi-
gated. Model parameters were varied, and computed results were compared
to exact theoretical results. Consistently good agreement was obtained,
and the resulting model criteria were used in calculations for models of
objects of varied shape and size. Problems with up to 1000 unknowns
were studied (reference 5). One summary paper was published following
the study of single wires (reference 6), another was published following
the study of multiple wires (reference 7) and a third was published
after large problems were studied (reference 8).
In parallel with these studies, a GEMACS computer code was

L undergoing initial development. The long term goal is to incorporate a
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wide range of methods for solving electromagnetics problems in a single
user-oriented package.

2. Theory
The method of moments is a formalism for reducing an integral

equation to a set of linear simultaneous equations
AX = b, (Eq. 64) ;

where A is the complex NxN impedance matrix, X is the column vector of
complex coefficients in the current expansion. and b is the complex
excitation column vector. A variety of choices for the integral equa-
tion, expansion functions, and weighting functions are in use. It is
assumed that the combination chosen leads to an unsymmetric matrix A.

If N is sufficiently small, equation 64 can be solved without
using peripheral device storage. Comparative efficiencies of different
solution algorithms can then be predicted from the required number of
complex mo's (multiplicative operations). |If N is large, other factors
must be considered in determining relative efficiencies. These are
discussed in subsection 7.

The most efficient general method for solving linear simul-
taneous equations is to decompose the matrix into a product of lower and
upper triangular matrices using Gaussian elimination (reference 9). This

3

requires approximately N°/3 mo's. Solution in fewer operations requires
some special feature of the equations

For thin-wire moments problems of sufficient size, such a
special feature is available. The matrix elements correspond to inter-
actions between wire segments. The interactions decrease with increasing

distance between the segments. A detailed in subsection C.5, the segments
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can be numbered such that the difference between segment numbers for all
close-neighboring segment pairs is small compared to N. The largest
matrix elements can then be kept close to the principal diagonal of A.

The matrix is separated into
A=L+8B+U, (Eq. 65)

where B is a banded matrix with upper and lower bandwidths M (numbers of
minor diagonals), L is the triangular portion of A below B, and U is the

triangular portion of A above B. Equation 64 can be written as
BX = b - (L+U)X (Eq. 66)
An iterative scheme is then

BX.

[ b - (L+U)Xj (Eq. 67)

where Xj denotes an approximation to the solution at the jth iteration,
and xj+l denotes an approximation to the solution at the next iteration.
Some starting value Xo is chosen, and X] is computed from equation 67.
Then X] 2

sequence converges, an approximate solution of equation 64 is obtained.

is entered on the right-hand side, and X, is computed. If the
Equation 67 must be solved at each iteration. The cost is

minimized by decomposing B into a product of lower and upper triangular

banded matrices, B, and B, ,. Equation 67 is then solved by forward

L V]
elimination in

. =b - ¢ b
BLZJ (L+U)xJ (Eq. 68)

followed by back substitution in

= 7 (Eq. 69)

Bij+l ]

38

e e oo e o S R




Decomposition of B is similar to full matrix decomposition, except that
the cost can be much less. The cost depends on the pivoting strategy
used. Full pivoting destroys bandedness, and B, and B, would not be

L U
banded. Partial pivoting doubles the bandwidth of either B, or B .

Pivoting on the principal diagonal elements of B retains th: band:idth
of M for both BL and BU‘ The latter is the least expensive in terms of
mo's, requiring about NM2 = 2M3/3. Pivoting on the diagonal elements
increases the risk of large errors due to accumulating rounding errors
during decomposition. This subject is discussed in subsection C.k4.

Assuming that B is decomposed by pivoting on the principal
diagonal elements, equation 67 can be solved at a cost of about N2 mo's
for each iteration. Assuming that K iterations are required for conver-
gence, the total cost for the iterative solution process is NM2 = 2M3/3
+ KN2 mo's. Based on the number of mo's required, the efficiency g of
the banded matrix iterative method relative to the best general method
is

33 + )] (Eq. 70)

g = N3 [3(NM2 - 2M
This quantity is discussed in subsection C.6.

» Theoretically, convergence of the sequence is assured if the
spectral radius (magnitude of the targest eigenvalue) of B-](L+U) is
less than one. |[If the spectral radius is greater than one, the sequence
must eventually diverge. |If it is only slightly greater than one, the

sequence may initially converge and then diverge. This behavior is

called pseudoconvergence. |t has been observed in this research (reference

5). The best approximate solution obtained during pseudoconvergence may
be sufficiently accurate for some purposes, depending on the quantity of

interest and the percent error.
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For the iterative method to be efficient, a reasonable con-
vergence rate is necessary. |If the choice of M and the segment numbering

scheme results in such a rate, it might be expected that the solution of

BX, = b (Eq. 71)

would yield a reasonable approximation to the exact solution Xe. This‘

is verified in practice. As a consequence, the zero vector can be used
for Xo, and the multiplication (L+U)X0 need not be performed. The cost
of obtaining Xl is then less than N2 (assuming B has been decomposed).

If M<<N, most of the cost of one iteration is saved. This is signifi-
cant only for small problems. The important point is that if the con-
vergence rate is high enough for efficient solution, X] is a reasonable
approximation to Xe if the zero vector is used for Xo. Hence, no physical
arguments or expensive calculations for obtaining a starting value are
required.

3. Convergence Measures

The iterative solution process is terminated by a numerical CC
(convergence criterion) on some convergence measure. In the early
studies of small problems (references 1 and 2) the measure used was

the RE (relative error),

_ sog g, te 3172
RE, = [0 = x)T 0 = x )/ % 1Y, (ka. 72)

where (+) denotes the complex conjugate transpose. The exact solution
Xe was obtained by full matrix decomposition using Gaussian elimination.
The computer CP (central processor) times for example problems were
recorded both for the exact solution process and for the BM| process.
Efficiencies computed from CP times and from numbers of mo's (equation

70) were similar, verifying that the number of mo's is an adequate mea-

sure of efficiency for solution processes if no out-of-core manipulations

are required.
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Due to the cost of computing Xe for large problems, the RE was
available as a convergence measure only during the research phase on

small problems. An alternative measure called the BCRE (boundary con-

dition relative error)
BCREJ. = [(AXJ. - b)*(AxJ. - b)/b+b]I/2 (Eq. 73)

was proposed (reference 1). A study of the relationship tetween the BCRE
and the RE for a variety of small problems showed that the BCRE is not
always a reliable measure of convergence (reference 2). This lack of reli-
ability can be traced to the stability of the equations for a given prob-
lem (reference 3). This subject is discussed in subsection C.4.

An alternative measure of convergence is available (reference 3).
The IRE (iterative relative error) is defined by
1/2.

+ t
IRE, = [(X, - X, i~ K K
e [( ] ) (xJ xJ_])/xJ xJ]

; (Eq. 74)

The IRE is a measure of the relative change in the sequence of approx-
imate solutions from one iteration to the next. It is an adequate
measure of convergence.

The sequence of values of the RE or the IRE has been found to
be approximated by a simple exponential function (reference 3). As a
result, the IRE can be approximately predicted at any iteration from

the values at the previous two iterations;

IRE, = Pe &' (4) P = IRE; (IRE;-1/IRE;)?
J «Qe (j~1) J i J
IRE;_; = Pe J 5) IRE ) = pe-Q- (j+1)
2
= In(IRE._,/IRE, af : Bk
Q = In( e J) e IRE; | (lREJ) /IRE;

(Eq. 75)




T T LA R T 1

The smallness criterion for convergence can then be placed either on the
IRE or on the predicted IRE at the next iteration.

Statistics gathered for small problems showed that the pre-
dicted value of the IRE is also a good prediction of the RE, at least
for cases of rapid convergence (reference 3). This leads to a definition

of the PRE (predicted relative error)
2
PRE. = (IRE.)“/IRE. ,. Eq.
; ( J) i-1 (Eq. 76)

The PRE (Equation 75, number 6) is an adequate measure of convergence.

The flexibility of the GEMACS code allows the user to specify his
own convergence measure. Any quantity that is readily (inexpensively)
computed can be used. Since some quantities such as the BCRE may not be
adequate due to instability of the equatjons, new measures should be
used with caution.

4., Stability

The subjects in this section have been investigated in great
detail in the last two decades. The purpose of this section is to
introduce, in a nonrigordus manner, those definitions and concepts
which were useful in this research. The material and notation closely
follow reference 9. Most quantities in this report are complex, whereas
those in reference 9 are real.

The euclidean length or norm of a vector X in complex N-

.

dimensional space is defined as
Hesilly2
[IX]] = (x7x) (Eq. 77)

Other vector norms exist, but will not be used here. The norm of a

complex matrix A with N rows and N columns is defined as




_—

AX 5y
A = max PR (Eq. 78
[{Al] e X W/ i q. 78)

where 6 denotes the zero vector. An alternative definition is

[IAl] = max [|AX]], |[x]|=1 (Eq. 79)

This can be interpreted to mean that if the unit sphere in the space of
X is mapped by AX into the space of b, ||A|| is the longest vector that
will be obtained.

Similarly, the norm of She inversg of A can be defined by
-1 A 'b |
||A [| = max ‘Lh-b—ﬂ-u- (Eq. 80)
b#6

-1
LA ]

or by
max||A-]b||, [|b]|=1 (Eq. 81)

Thus, if the unit sphere in the space of b is mapped into the space of X
by A_‘b, ||A_]|| is the longest vector that will be obtained.

The condition number of A, denoted by cond(A), is defined as
cond(A) = ||a]] . ||a7Y]] '- (Eq. 82)

This number is not easily computed. It is conceptually valuable in a
variety of ways. |If the vector b is subject to the uncertainty &b, the

uncertainty 8X in X is bounded by

L.,%.H < cond(A) . Eb (Eq. £3)

The relative error in the solution is then bounded by the product of the
relative error in b and cond(A). |If the matrix elements in A are subject
to uncertainty 8A, a similar bound is obtained. In each case, a large
value of cond(A) is a warning that the solution may be highly sensitive

to small changes in A or b.
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Another useful bound involves the ratio of the RE to the

relative residual, which is the BCRE used in this work:

coni(A) f-BEEE < cond(A). (Eq. 84)

i Since cond(A) > 1, this rafio can be very small or very large. For a
variety of thin-wire moments problems, this ratio was found (reference 2)
to be between 1 and 10, with an average of about 3. It is obvious that a
much wider range of values is possible. If cond(A) is large, A is said

, to be ill-conditioned. One consequence of ill-conditioned matrices is
that the BCRE may be quite small when the RE is large. The BCRE may
then be an adequate measure of convergence in the banded matrix iter-
ation method only if cond(A) is near unity.

A measure of stability that has been used in the method of moments

(reference 10) and that has properties similar to those of the condition
number, is the pivot ratio. This quantity is easily calculated during
decomposition by Gaussian elimination. It can be defined as the ratio

. of the magnitudes of the first and last pivot elements (reference 10), or
as the ratio of the largest to the smallest of the magnitudes of the pivot

elements. Only the order of magnitude of the pivot ratio is significant.

The choice of definitions is not important when compared to the effect
of the choice of pivoting strategies. While pivoting on the largest
element of a row or column will reduce the cumulative effect of rounding
errors, it also reduces the pivot ratio. Hence, pivoting on the diagonal
elements should produce a larger pivot ratio for ill-conditioned matrices.
In the banded matrix iterative scheme, the banded matrix is
decomposed using Gaussian elimination. The decomposition is accomplished
by pivoting on the diagonal elements. (Pivoting on other elements would

increase the bandwidth and result in loss of efficiency.) The pivot

ratio for the banded matrix is then available as a measure of ill-con-
ditioning of B. Unfortunately, no method has been found to relate

either the pivot ratio to cond(B) or cond(A) to cond(B). It is possible

Ly
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that either A or B could be ill-conditioned while the other is not.

This would probably depend on the physical problem, the choice of segment
numbering schemes, and the choice of bandwidths. Certainly cond(B)
should approach cond(A) as M approaches N.

55 Segment Numbering

Two types of segment numbering problems occur. For the iter-
ative scheme to be efficient, the segments must be numbered so as to
keep the large matrix elements in the band. The best choice of num-
bering for this purpose is obvious in some cases and not in others.

More than one choice may be apparent. The same logical process can be
used to number segments for a variety of problems, as will be shown.

The other problem in numbering is related to the requirements for input
data for the geometry processor in any moments code. Generally speaking,
the code automatically numbers segments in sequence along each wire, in
the order in which wire data are entered. For the iterative method,

this numbering is adequate in some cases and not in others. If some
other numbering is necessary, the obvious method is to enter the wire
data in the order desired. For most codes, this could require a tedious
process of entering each segment as a single wire and supplying connection
data. An easier way will be shown that involves segment renumbering.

a. Numbering for the Iterative Method

The logic for the numbering scheme that is adequate for |
many problems is most easily explained for flat objects (all wires in a
plane). The basic idea is to superimpose a set of narrow parallel
strips on the object of interest. Figure 3 shows the strips as separated

by dashed lines, with a lumpy appearing object in outline. Assuming

that the object is a wire loop, numbering is as shown in the figure.
Starting at one extremity, numbering proceeds from left to right until

all segments in the first strip are numbered. Moving to the next strip,

numbering again proceeds from left to right. This continues until all
segments are numbered. In the figure, it is assumed that the segment
end occurs at intersections with the dashed lines. This need not be the
case. Strip widths can also vary. This depends on the geometry of the

object.
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Figure 3.

Parallel Strips Superimposed on a Wire Loop
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Section E of reference 2 includes a discussion of this
numbering scheme as it applies to example problems. Generally, any flat
object should be oriented so that the strips run across the narrow
dimension of the object. This keeps the number difference between seg-
ments in adjacent strips as small as possible.

The strip numbering scheme has a direct application for
some three-dimensional objects. The simplest is a cylindrical grid.
Numbering a rectangular grid by the strip method and rolling the grid
into a cylinder (about the correct axis) results in a helix-1like number-
ing scheme. This is appropriate when the cylinder length is greater
than or roughly equal to its circumference. |[f the cylinder has end
caps, numbering should proceed fromn one end cap center to the other.

The pattern is then spiral, helicazl, and spiral. However, if the
cylinder is short compared to its circumference, the spiral scheme may
not give an efficiency as high as that obtained by orienting the cylinder
axis normal to the plane of the strips.

A sphere or cube can be handled much the same as the
cylinder with end caps. For elongated shapes, numbering should start at
one extremity.

A similar method for segment numbering that can be auto-
mated is discussed in reference 4. It is called geometric cell divi-
sion. Figure 4 shows a set of parallel strips normal to a direction
vector d. For planar objects, is was noted that the set of strips could
be superimposed on the wire object; segment numbering would proceed
along each strip starting at one extremity of the object. For an irregu-
lar object, the choice of direction for d is not obvious.

Figure 5 shows an irregular planar object with four
possible directions for d. |If the small appendages were absent, dI would
be the obvious choice. Numbering would then be in strips across the
narrow dimension of the large rectangle. With the appendages present,
directions dI and d3 are not advisable. |In some strips, numbering would
proceed across the large rectangle and along the length of one projection

before advancing to the next strip. This can be alleviated somewhat
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by using direction dz, so that no strip runs through the length of

the longer projection. The other choice is dh’ and it is clearly the
£+ best. No strip runs both across the large rectangle and along a projec-
3 tion, and the strips that cut through both projections include few wire

segments.

)°

Figure 4. A Set of Parallel Strips Normal to a Direction Vector d

After studying several examples of this sort, a consistent
result emerges. The best choice of orientation apparently lies along
(or at some small angle to) a principal inertial axis of equal point
masses located at the wire segment centers. The best principal axis is
always the one about which the moment of inertia is least. This scheme
will be called the PASS (Principal Axis Slicing System).

No proof has
been found that this orientation for slicing is the best choice, and

its practicality would have to be exhibited in practice. The method can

be extended to three dimensions as follows. Let the principal axis

coordinates be denoted X, Y, Z, with the least inertia about the X-axis
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Figure 5. An Object of Irregular Shape with Various Possible
Direction Vectors
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and the greatest about the Z-axis. Divide the object by a set of planes
normal to the X-axis, with the separation of the planes somewhat less
than the wire segment lengths. The space between adjacent planes is
divided by planes normal to the Y-axis, leading to a set of parallel
tubes of square cross section in each planar section normal to the X-
axis. Numbering proceeds along one tube (parallel to the Z-axis) starting
at one edge of the section of the object. It proceeds from tube to tube
across the object, and then to the next planar section. The first
planar section is always at one extremity of the object. Figure 6

shows the numbering obtained by this method for a rectangular object
modeled with a regular wire grid.

For a problem such as a large cylinder with end caps or
other such flat-ended object, the method of geometric cell division is
probably inferior to the spiral-helical-spiral numbering method. The
former results in numbering across the end in strips before proceeding
along the object, so that a rather large difference in segment numbers
occurs near the edge where numbering begins. The limited practical
experience with large fat objects precludes any definite statement con-
cerning the best approach.

b. Segment Renumbering

As mentioned earlier, the geometry processing portions of
most programs provide segment numbering that is sequential along each
wire in the order in which wire data are entered. This segment number-
ing is adequate for the banded matrix method for some problems. If it
is not, it can still be used initially to simplify the model input data.
The segments can then be renumbered in any sequence desired. Details
and examples of the renumbering process as it was used in the research
phase are contained in Section E of reference 2. The GEMACS code permits

the user to number the segments in any order desired.

50




¥
\
\
N
Y

30 32 34 o ‘
18 21 23 ¥ (16 »
3 8 13 w
16 ¢
¥4
| 1
6 o |37
4 /9 14 4,
/ \7
2 17
i 12 i
z /' 5 10 15
7
‘—l/ .
Y

Figure 6. Part of the Segment Numbering Obtained with the Principal
Axis Slicing System for a Rectangular Parallelpiped
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6. Choice of Bandwidth
The choice of bandwidth M depends both on the problem and on

the numbering scheme used. The ideal choice yields a minimum solution
cost. An understanding of the formula for efficiency in equation 70 is
helpful in making this choice.

a. Efficiency Characteristics

The efficiency can be written

| ’ (Eq- 85)
£2(3-2f) + 3K/N

where f is M/N. A useful characteristic of this efficiency is obtained

by setting K equal to zero. The upper limit on g is then

! (Eq. 86)

N R e
LM = 2o on

This function is shown in figure 7 as a solid line, treating f as a
continuous variable. The actual efficiency always falls on or below
this line.

For any given problem, with a particular choice of segment
numbering and convergence criterion, the actual efficiency as a function

of the bandwidth is as follows. At M equal to N, the solution X‘ will

always satisfy the CC (convergence criterion). (When the relative error is

not available as a convergence measure, at least one iteration is necessary

to test for convergence. If N is large, one iteration is of little
cost, and will be ignored in this discussion.) As M is decreased, the
error in Xl gradually increases. Experience shows that this error may
not increase monotonically, but may have minor oscillations superimposed
(reference 1). Eventually, a bandwidth in the breaking region is reached.

This region is a narrow range in bandwidth where the error in xl is just

above or just below the CC. A breaking point can be defined as the largest

bandwidth at which the error in X] is greater than the CC. At this
bandwidth, at least one iteration is required to reduce the error to

the CC. In most cases, the actual efficiency will then depart from
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the gLIM curve. Because the savings in cost of decomposing B at a

smaller bandwidth is greater than the cost of a few iterations in the

breaking region, the efficiency generally continues to rise as M decreases.

The rate of increase is smaller than that of TS however.

In some cases the actual efficiency can depart from I M
at the breaking point, then return briefly due to one of the minor
oscillations mentioned earlier, and then depart again. This behavior was
shown by a fictitious example in figure 7.

For any particular CC, the actual efficiency will rise
somewhat from the value at the breaking point as M decreases, then reach
a peak and begin to decline. The discrete nature of the process neces-
sarily means that minor up and down behavior over narrow ranges of band-
widths will occur. This behavior is highly dependent on the problem and
the segment numbering scheme.

Figure 8 shows the curve of I M and a set of dashed
curves obtained from equation 70, using the data from example problem 9
in reference 2. (The convergence measure was the RE. Points along the
dashed curves were computed from the data in Table 45 of reference 2,
reproduced here as table 1. Points for the curve at a CC of 0.1 percent
were approximated using the extended exponential function.)

Consider the curve for a CC of 10 percent. At f equal to
17/80 or 0.21, the RE for X]

CC of 10 percent, so no iterations were required. Then either equation

was 6.13 percent. This satisfies the

70 or equation 36 yields an efficiency of 8.7. This is the highest
efficiency that can be obtained for this problem at a bandwidth of 17;
relaxing the CC will not affect the efficiency. Tightening it to some-
thing less than 6.13 percent will result in at least one iteration being
performed, with a loss in efficiency.

The location of the peak of the efficiency curve clearly
shifts toward smaller bandwidths as the CC is relaxed. The width of the
curve near the peak narrows as the CC is relaxed. The rate of decrease

in efficiency is less to the right of the peaks.
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TABLE 1. RELATIVE ERROR (%) FOR EXAMPLE 9, REFERENCE 2 (VERTICAL
3 HALF-RHOMBIC ANTENNA, N=80)
' BANDWIDTH
= I TERATIONS 5 6 7 12 17
B
| 1 67.67 |53.91 | 40.47 | 38.91 | 11.05 | 6.13
= 2 46.09 |28.89 16.14 | 15.12 1.36 .59
3 31.62 | 15.64 6.53 5.94 .18
] 4 21.69 | 8.46 2.64 2.33
' 5 14.87 | 4.57 1.06 .91
6 10.20 | 2.47 43
7 7.00 | 1.34
? 8 4.80 | .72
E | 9 3.29
: 10 2.26
3 11 1.55
f 12 1.06
' 13 .73




If the program user imposes a tight CC (about 1 percent
or smaller for small problems), he can afford to pick M such that he
misses the peak efficiency by quite a bit to either side because the
peak is wide. At larger values of the CC, he will tend to decrease M to
try to stay near the peak, but he may be increasingly conservative to
avoid a point too much to the left of the peak. This is good in a
sense, because use of larger bandwidths provides lower initial errors
and higher convergence rates, resulting in better performance of the PRE
convergence measure (see subsection €.3). |If the user picks a bandwidth
too much to the left of the peak, slow convergence and low efficiency
will occur. Restarting with a larger bandwidth might provide a higher
overall efficiency even with the cost of an aborted run included.

b. Bandwidth Estimates for Long, Thin Objects

The shapes and locations of peaks of the efficiency
curves vary considerably from problem to problem. No method for accurate
prediction of the bandwidth for peak efficiency has been found. A
survey of example small problems did yield a trend when the CC is |
percent. |t was found that the bandwidth for efficient solution could
be estimated from structure dimensions with fair reliability. A bandwidth
M corresponds to a distance RM within which all interactions are to be
kept in the band. (For segments of length 0.1 A numbered sequentially
along a straight wire, a bandwidth of M corresponds to a distance of M x
0.1 A.) The distance in wavelengths for bandwidth estimation is shown
in figure 9 as a function of the object length in wavelengths for
objects having a dominant dimension L. The vertical bars show the
uncertainty in value for several problems. The linear trend is obvious.
This trend was obtained from studies of problems with 100
unknowns or less. They were primarily problems involving long wires or
wire arrays. Studies of larger problems did not include bandwidth as a
parameter. The initial bandwidth was generally selected from figure 9.
For planar or near-planar objects and for thin cylinders, rapid
convergence was fairly consistently obtained. Fat cylinders, spheres,

and objects where L is less than X require larger bandwidths (reference 5).




loS '{
RH/A
1.0 + /////’
i A
0.0 & + t + t 5
0 2 L 6 8 10
L/a
Figure 9. The Linear Trend Between the Bandwidth

Estimate and the Object Length L
(RM= Distance Corresponding to Bandwidth)
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The parameter L is usually the largest geometric dimen-
sion; however, for complex objects, the choice or value of L may depend
on the excitation type and orientation (this is shown by an example

in subsection D.3). Use of figure 9 for these objects may lead to
pseudo-convergence for cases in which there are large (or small coherent)
interactions not included in the band.

7+ Computer Timing Requirements

For small problems, the primary computer cost is the CP (central
processor) time required to compute matrix elements. Use of the BMI
solution process in the place of full matrix decomposition by Gaussian
elimination is primarily of academic interest for such problems. The CP
time for computing matrix elements increases as the square of N for most
programs. The solution time increases as the cube of N for full matrix
decomposition. For sufficiently large N, the solution time by this
method will eventually dominate. The iterative process is a method for
reducing the solution cost. The total cost for generating and solving
large problems is sufficient to justify optimization of the code for a
given computing facility.

For problems with N in the range below 100C, three primary
factors contribute to the computer costs; the CP time required to compute
or fill the impedance matrix, the CP time required to perform the multi-
plicative operations in solving the equations, and the PP (peripheral
processor) time required for out-of-core manipulations. The PP time
includes input/output time and considerable bookkeeping time. For large
problems, the PP time is almost entirely associated with the solution
process. A cost comparison of solution methods should include both CP
and PP times. (The best comparison is actually based on dollar costs,
but no two installations use the same cost algorithm to charge for total
computer resources used.) The PP time and solution CP time are extremely
dependent on the machine, the computing system, and the particular
computer code being used. The soluticn CP time also depends on the
compiler used. Consequently, the efficiency based on the number of
multiplicative operations is used as a simple assessment of overall

efficiency.
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The CP times required for solution on the CDC 6600 computer
(FTN 4.2 compiler) are shown in figure 10 versus the number of multi-
plicative operations required to solve example problems using the itera-
tive method. The linear dependence over such a wide range indicates that
the efficiency based on number of multiplicative operations is a valid
comparison of CP costs between methods.

The PP time shows a similar linear dependence on the number of
multiplicative operations, except that the PP times were higher by a
factor of about 15. This proportionality factor is extremely dependent
on the amount of fast access core available for matrix elements during
the decomposition of B. (For a given amount of storage, the PP time for
decomposition of B should be much less than that for decomposition of the
full matrix using Gaussian elimination.) The amount of available core can
be increased by a variety of methods including program segmentation or
overlaying. These methods were not used during this investigation and
only 14 columns of the matrix could be kept in core for a problem with
1000 unknowns. As a consequence, the PP costs were the highest dollar
cost of the study.

The CP times required by the modified AMP code incorporating
the BMI solution technique for computing matrix elements is shown in
figure 11 versus the number of unknowns. The upper curve is for wire
grid problems and the lower is for wire problems with no multiple wire
junctions. The difference is due to a repeated search of junction con-
nection data, and is not apparent for small problems. Most of this cost
difference is eliminated in the GEMACS code by replacing the search with
a circular linked list. The CP times for large problems can be further
reduced by using less expensive algorithms (such as the Hertzian dipcle)
to compute matrix elements corresponding to interactions between segments
separated by about a wavelength or more. This option was not used for
the example problems. Further cost reductions may be obtained by
relaxing the accuracy restrictions in computing large matrix elements.
These elements should be accurate only enough to match the overall accuracy

required of the modeling and solution process.
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D. SUMMARY OF RESULTS

Numerical results were obtained for a variety of thin-wire problems
(references 1 through 5). Three different computer programs were used.
The general results and a few examples are listed here. All calculations
were performed on a CDC 6600 computer. Dimensions are in meters.

{ Single Straight Wires

The first results (reference 1) were obtained using the moments
formalism of Harrington (reference 11). That is, the potential integral
equation was solved using pulse expansion functions and point matching
(collocation) at wire segment midpoints. All examples were single
straight wires, either antennas or broadside scatterers, with L (length)
to A (wavelength) ratios ranging f-om 2.5 to 10. Length to D (diameter)
ratios were either 74.2 or 1000. The conrergence measure was the RE,
and the convergence criterion was | percent. There were 10 segments per
wavelength used, with segment numbering sequential along the wire. [t
was found that:

(1) The iterative solution converges monotonically at bandwidths
from 3 to N. (With 10 segments per wavelength, a bandwidth of

3 means that interactions at distances over 0.3)X are excluded

from the band.) An example of the convergence behavior is

shown in figure 12. The wire is a centerfed antenna with L/A

= 2.5, L/D = 1000, and N = 25. The figure shows the RE at

each iteration for a given bandwidth. Points are connected by

a line for clarity; the results are necessarily discrete.

(2) Convergence rates depend on the wire radius, as do errors in the

initial solution, X Thinner wires result in better efficiency.

(3) Relative errors forIX‘ are larger for resonant antennas than
for nonresonant antennas for the same bandwidth. The differ-
ence is greater for smaller wire radii.

(4) The relative error for X' does not decrease smoothly and
montonically with increasing bandwidth. Periodic variations

occur at changes in bandwidth that correspond to half-wavelength

changes in distance along the wires, as exemplified in figure

13,
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(5) As indicated in subsection C.3, convergence behavior for a
given bandwidth can be approximated with varying accuracy by the
formula RE(%) 100 e-Q.i, where i is the number of iterations
and Q is a function that is dependent on the bandwidth. The
dependence is linear in a first approximation, with an oscilla-
tion superimposed. However, the slope of the linear part is
dependent on the excitation, length, and wire radius.
(6) For a length to wavelength ratio of 10, iterative solutions
with a relative error of 1 percent were obtained with an
efficiency of about 7. For a relative error of 10 percent, an
additional reduction in CP time up to a factor of 2 was obtained.
(7) The bandwidth resulting in peak efficiency varies with wire
length in a roughly linear fashion. At 10 segments per wave-
length, the optimum bandwidth is about 4 of 5 for 3) wires and
in the range 10-15 for 10X wires.
The reader is referred to reference 1 for details and to 6 and 7 for
summary comments.

2. Multiple Straight Wires

The second set of results (reference 2) was obtained by modi-
fying program WAMP (reference 12). That program is based on the Pockling-
ton integral equation, with pulse plus sine plus cosine expansion func-
tions and collocation. With N wire segments, this choice of expansion
function requires 3N current coefficients. Imposition of ''extended
continuity conditions' at adjacent segment midpoints reduces the number
of unknowns to the W values of current at the segment midpoints. Point
continuity in the current is not obtained at junctions. An extended
continuity method is also used at multiple junctions, but the method
is considered poor for wire grid problems.

Using this program for generating the equations, various
combinations of thin-wire geometries were used to investigate the
capabilities and limitations of the banded matrix method. These

included:




(1) One straight wire.

(2) Two parallel centerfed antennas at varying separations and
radii.

(3) Two collinear centerfed antennas at large and smail separations.

(4) A linear array of parallel dipoles.

(5) Square and circular arrays of parallel dipoles.

(6) A two-dimensional array of short dipoles.

(7) A helix antenna.

(8) A vertical half-rhombic antenna over sea water.
(9) A wire-gridded rectangular strip.
(10) A square loop.

(11) A pair of crossed wires.
In each case, N was restricted to 100 or less for economic reasons.
For many of the examples, the sequence of solutions converged

uniformly to the exact solution. Divergence was forced for some examples

by using a combination of element numbering, geometry, and bandwidth so
that some large matrix elements were not contained in the B band. The
general approach to segment numbering for the BMI solution technique was
developed during this phase.

Because of the wide variety of geometries involved in these
examples, the results are not in a form to be easily summarized. The
convergence measure was the RE. At a convergence criterion of 1 percent,
efficiences were generally around 5 to 10 and up to 23. The iterative
process was interrupted for some problems when the RE was first reduced
to less than 30 percent. The far field pattern was computed from the
approximate solution. The iteration was then continued to the |
percent level, and the far field pattern was again computed. Comparison
of the far fields obtained from the two current distributions indicates
that a 30 percent CC may be adequate for far-field pattern determination.

Example 12 of reference 2 is reproduced here to exhibit one
of the problems with automating the segment numbering scheme called PASS

(see section C.5). Table 2 shows the description of the problem; a
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TABLE 2. DESCRIPTION OF EXAMPLE 12 FROM REFERENCE 2

1]
'

TYPE: Square loop

DIMENSIONS: 2.5 meters on each side
Rw= 0.0015, A=l

SEGMENTATION: 10 segments per meter, total of 100

SEGMENT NUMBERING:
52 S 100

S0 99
L] L]
6
4
2 51

1 3 5 s 49

Excitation: Segment 25 (center of bottom edge)

EXACT SOLUTION CP TIME (sec): 4.178
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square loop antenna. Dimensions are in meters. The strip numbering
scheme produces the segment numbering shown if the strips are oriented
properly. (The vector d in figure 4 would be tilted 45 degrees to

the right.) Table 3 shows the convergence data obtained. Efficiencies
are shown based both on comparative computer central processor times and
on comparative numbers of multiplicative operations.

The problem with using an automated PASS system for this
problem is that the geometry is redunant. The principal axes can lie
either parallel to the sides of the square or pass through its corners.
The former would yield a poor numbering scheme, because numbering would
be sequential along one edge, then alternate between opposite sides. An
efficiency greater than three is unlikely with such numbering.

It would be possible, however, to automate a slicing system
for numbering that would allow the user to specify the orientation for
the vector d.

For the numbering actually used, the bandwidth for efficient
solution could have been estimated from figure 9 using an object
length (corner to corner circumferential distance) of 5X. A distance RM
of about 0.7) is suggested by figure 9. The difference in segment
numbers for segments separated by 0.7)X is 14. A bandwidth of 14 provided
peak efficiency.

3. Modified AMP

The results documented in references 1 and 2 were sufficiently
encouraging to motivate development of a computer program for solving
large problems. The AMP (Antenna Modelirg Program) was selected for
modification (reference 13). The AMP coce uses the same moments formalism ‘
as the WAMP code except for continuity schemes at junctions. Reference 4

discusses the modifications and the resulting code.

A number of problems of intermediate size (N :_300) was investi-
gated (reference 4). The most important of these were the wire grid models

of conducting objects of various shapes. A parameter study (wire radius,

segment length and associated mesh size) was conducted for two sphere problems.




TABLE 3.

RELATIVE ERROR (PERCENT) AND CP TIME (SECONDS)
FOR EXAMPLE 12 FROM REFERENCE 2

BANDWIDTH
ITERAT IONS 6 10 14 18 22
1 47.09 22.36 10.70 12.47 10.50
2 23.98 L.95 125 1.67 97
3 12.49 1.17 .22 .23
L 6.53 .28
5 3.42
6 1.79
7 .94
TIME 0.738 0.477 0.453 0.577 0.591
EFF (CP TIME) 5.7 8.8 9.2 fu2 7«1
EFF (MO'S) 5.3 8.5 8.8 6.8 6.5




The reader is referred to reference 4 for the details and to reference 8
for a summary. The resulting guidelines call for segment lengths somewhat
less than 0.2\ as a maximum and a wire radius of about 0.025). Predicted
far field patterns and bistatic scattering cross sections for models
constructed with these guidelines were consistently in good agreement
with the independent results from the literature.

The modeled objects in this study all had rotational symmetry.
The models were constructed with many-fold rotational symmetry. Both
this symmetry and the iterative method were used in the solution process.
Due to symmetry operations performed on the matrix, the iterative method
was not highly efficient in this study because large submatrices and band-
widths were required. This is not especially important, because the
only significant cost for such problems is in generating part of the
impedance matrix.

Reference 5 includes a number of example problems with N
ranging up to 1000. The solutions were mostly obtained without using
symmetries. Banded matrix iteration is shown to be a useful solution
method for large problems.

Most of these example probiems were chosen because the predicted
current distribution or far fields could be compared to independent
results from the literature. Few problems of the desired electrical
size range have been solved for current distributions, so most of the
comparisons are to theoretical far fields. As noted previously, reasonably
good far fields can be obtained from inaccurate currents. Comparison to
theoretical far fields is not the best validation for choice of model

parameters.
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Comparisons of shapes of grid current distributions and sur-
face current distributions are possible in some cases. The wires
usually must be oriented on the surface along the natural coordinates,
because surface currents are computed by component along those coordi-
nates. A rectangular plate modeled by a square mesh grid is an obvious
example. For a sphere, the natural wire orientations are along lines of
latitude and longitude. For plane wave scattering, surface currents are
known for the E- and H-planes. |If the plane wave is incident along the
polar axis, H-plane currents are $-directed and can be compared to
currents on wires crossing the H-plane and oriented along lines of
latitude. E-plane surface currents cannot be compared to currents on a
set of wires along a line of longitude, because these currents break up
and run through the pole on a variety of wire paths. [|f the plane wave
is incident along a vine normal to the polar axis and the electric field
is in the equatorial plane, both comparisons are possible. In the E-
plane, the grid is essentially rectangular. Currents are ¢-directed in
the H-plane, and can be compared to currents on wires along lines of
latitude except at the poles. Such a comparison is shown in figure 14
for a sphere with ka equal to 4.7 (example 13 from reference 5). The
model used 996 wire segments for a surface area of 7 square wave- :
lengths. The predicted bistatic scattering cross section was in
excellent agreement with the exact theoretical results of King and
Wu (reference 14).

In general, the iterative process yields good efficiencies for
planar and near-planar wire grids when the strip numbering scheme is
used and the bandwidth is chosen from figure 9. It also works well
for cylinders with diameters less than about a half-wavelength. For fat
cyvlinders and spheres, larger bandwidths are required for convergence.

idths chosen from fiqure 9 for these problems yield pseudocon-
e or divergence. No rule for bandwidth selection in such cases
ce the study of such problems was brief. It is possible

ral modes contribute to this problem; example 15 of reference

ittenpt to investigate this possibility. ¢




S Ul e s L dt LUl B ]

2 g e
Pe Q_ fe) r0.66
£ o
\\\\ , | |
= 0\ o : (mA)
E o] 3
g s ' : ‘ |
AL 5 . ;( L 0.33
= \ ;
\
B\ A
\\\b 7
'\\CL\ /6
L
o L) Al B | ID D D 7. P 1 0 j
0 30 60 90 120 150 180
FRONT ANGLE (deg) REAR
Figure 14, Amplitude of Current on a Sphere for Plane Wave Scattering,

ka = 4.7, Example 13 of Reference 5 (Surface Currents K
from Reference 14; Solid Line for E-Plane, Dashed for
H-Plane. Wire Grid Currents |; e for E-Plane, © for Near

H-Plane.)




As an example of the application of the iterative process in

larger problems, example 6 of reference 5 is reproduced here.
EXAMPLE 6 OF REFERENCE 5

! A flat square plate is modeled as shown in table 4. A plane

wave with normal incidence is scattered by the wire grid. The incident

; E-field is parallel to one edge of the plate.

| In example 6A, the wire segments are numbered in strips at
right angles to the incident E-field. The plate edge length is 2).

4 ‘ Figure 9 indicates a bandwidth for peak efficiency corresponding to

E ) a distance of 0.3\ for an object of length 2X. With segment lengths of

E: ; 0.125)\, a bandwidth of 132 includes interactions to a minimum distance
of 0.5A. Table 5 shows the convergence data. Convergence is so rqpid
that a smaller bandwidth would probably provide better efficiency. The
normal ized bistatic cross sections in the E- and H-planes are shown in
figures 15 and 16. The backscatter cross section c/A2 is 220. The
pivot ratio was 20.0. The matrix fill time was 608 seconds and the
solution time was 138 seconds.

< Example 6B is identical to example 6A except for orientation
of the incident field, wrich is parallel to the X-axis. This is equiva-
lent to retaining the orientation parallel to the Y-axis and numbering
in strips normal to the X-axis. The two are physically equivalent
problems. The convergence data are shown in table 6. The solutions
for the two examples were the same within about 1 percent in the regions
of large current.

Currents parallel to the field are shown in figures 17(a), 17(b),

and 17(c) for wires along the edge, next to the edge, and in the

d interior of the grid. The edge wires carry a larger current as expected.

The wires next to the edge carry slightly less current than interior

wires.




TABLE 4. DESCRIPT!ON OF EXAMPLE 6 FROM REFERENCE 5

TYPE: SQUARE PLATE

DIMENSIONS: L =2, W= 2, Rw = 0.025; A =1 (6A, 'B),
X = 1.176 (6C)

SEGMENTATION: SQUARE GRID, 16 SEGMENTS PER EDGE, TOTAL OF 544

SEGMENT NUMBERING:

Z
17 512
1

50

A 529
3 o A 530
2 O 531

EXCITATION: PLANE WAVE, NORMAL INCIDENCE, E PARALLEL TO ONE EDGE

75




76

i
3
TABLE 5. CONVERGENCE DATA FOR EXAMPLE 6A
(N = 5““, M= ]32)
: ITER EFF BCRE IRE PRE
f | 6.8 13.68 100.00 3
: 2 6.5 3.60 15.47 2.39
' 3 6.3 3.29 .70
} TABLE 6. CONVERGENCE DATA FOR EXAMPLE 6B
: (N = 5“4, M = 132)
k-
ITER EFF BCRE IRE PRE
: | 6.8 25.76 100.00 .
2 6.5 7.47 20.50<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>